

 CS303 SYSTEM SOFTWARE

 MODULE I

System Software Vs. Application Software

 Operating System is the System Software that makes

the Computer work. We can say that an Operating System (OS) is

Software that acts as an interface between you and the hardware. It

not only contains drivers used to speak the hardware's language, but also

offers you a very specific graphical user interface (GUI) to control

the computer.

OS can also act as an interface (from the hardware) to the other

software. A complex OS like Windows or Linux or Mac OS offers

the services of an OS, but also has applications built in. Solitaire,

Paint, Messenger, etc. are all applications.

Application software is the software that you install onto your Operating

System. It consists of the programs that actually let you do things with

your computer. These Applications are written to run under the
various Operating Systems.

These include things like your word processing programs, spread sheets,

email clients, web browser, games, etc. Many programs, such as most of
the Microsoft Office suite of programs, are written in both Mac and

Windows versions, but you still have to have the right version for your

OS.

For example - Tally for Accounting, MS-Word for Word Processing etc.

http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

So, the Operating system of a Computer is the Software that allows the

Computer work. It provides the framework under which the
Applications run. An operating system is the type of Computer system

you have such as Window XP or Window 95, 98, Mac, etc.

The Applications are the Software that actually allows the user to do
something with the Computer. Without the applications, all you can do

is change settings and navigate among the folders. You can purchase its

CD from a software company or download from a software company’s
web site.

Examples of System Software are - Operating Systems, Language

Translators etc.

Different System Software– Assembler, Linker, Loader, Macro

Processor, Text Editor,

Debugger, Device Driver, Compiler, Interpreter, Operating System

Assembler: A computer will not understand any program written in a

language, other than its machine language. The programs written in

other languages must be translated into the machine language. Such
translation is performed with the help of software. A program which

translates an assembly language program into a machine language

program is called an assembler. If an assembler which runs on a
computer and produces the machine codes for the same computer then it

is called self assembler or resident assembler. If an assembler that runs

on a computer and produces the machine codes for other computer then
it is called Cross Assembler.

Assemblers are further divided into two types: One Pass
Assembler and Two Pass Assembler. One pass assembler is the

assembler which assigns the memory addresses to the variables and

translates the source code into machine code in the first pass
simultaneously. A Two Pass Assembler is the assembler which reads the

http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

source code twice. In the first pass, it reads all the variables and assigns

them memory addresses. In the second pass, it reads the source code and
translates the code into object code.

Compiler: It is a program which translates a high level language

program into a machine language program. A compiler is more
intelligent than an assembler. It checks all kinds of limits, ranges, errors

etc. But its program run time is more and occupies a larger part of the

memory. It has slow speed. Because a compiler goes through the entire
program and then translates the entire program into machine codes. If a

compiler runs on a computer and produces the machine codes for the

same computer then it is known as a self compiler or resident compiler.
On the other hand, if a compiler runs on a computer and produces the

machine codes for other computer then it is known as a cross compiler.

Interpreter: An interpreter is a program which translates statements of
a program into machine code. It translates only one statement of the

program at a time. It reads only one statement of program, translates it

and executes it. Then it reads the next statement of the program again
translates it and executes it. In this way it proceeds further till all the

statements are translated and executed. On the other hand, a compiler

goes through the entire program and then translates the entire program
into machine codes. A compiler is 5 to 25 times faster than an

interpreter.

By the compiler, the machine codes are saved permanently
for future reference. On the other hand, the machine codes produced by

interpreter are not saved. An interpreter is a small program as compared

to compiler. It occupies less memory space, so it can be used in a
smaller system which has limited memory space.

Linker: In high level languages, some built in header files or libraries
are stored. These libraries are predefined and these contain basic

functions which are essential for executing the program. These functions

are linked to the libraries by a program called Linker. If linker does not
find a library of a function then it informs to compiler and then compiler

generates an error. The compiler automatically invokes the linker as the

last step in compiling a program.

Not built in libraries, it also links the user defined functions

to the user defined libraries. Usually a longer program is divided into
smaller subprograms called modules. And these modules must be

combined to execute the program. The process of combining the

modules is done by the linker.

Loader: Loader is a program that loads machine codes of a program

into the system memory. In Computing, a loader is the part of

an Operating System that is responsible for loading programs. It is one
of the essential stages in the process of starting a program. Because it

places programs into memory and prepares them for execution. Loading

a program involves reading the contents of executable file into
memory. Once loading is complete, the operating system starts the

program by passing control to the loaded program code. All operating

systems that support program loading have loaders. In many operating
systems the loader is permanently resident in memory.

macro processor

A general-purpose macro processor or general

purpose preprocessor is a macro processor that is not tied to or

integrated with a particular language or piece of software.

A macro processor is a program that copies a stream of text from one
place to another, making a systematic set of replacements as it does so.

Macro processors are often embedded in other programs, such as

assemblers and compilers. Sometimes they are standalone programs that
can be used to process any kind of text.

Macro processors have been used for language expansion (defining new
language constructs that can be expressed in terms of existing language

components), for systematic text replacements that require decision

making, and for text reformatting

Text Editors

https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/Macro_(computer_science)

A text editor is a tool that allows a user to create and revise documents in

a computer. Though this task can be carried out in other modes, the word
text editor commonly refers to the tool that does this interactively.

Earlier computer documents used to be primarily plain text documents,

but nowadays due to improved input-output mechanisms and file
formats, a document frequently contains pictures along with texts whose

appearance (script, size, colour and style) can be varied within the

document. Apart from producing output of such wide variety, text
editors today provide many advanced features of interactiveness and

output.

Types of Text Editors

Depending on how editing is performed, and the type of output that can

be generated, editors can be broadly classified as -

1. Line Editors - During original creation lines of text are recognised

and delimited by end-of-line markers, and during subsequent

revision, the line must be explicitly specified by line number or by

some pattern context. eg. edlin editor in early MS-DOS systems.
2. Stream Editors - The idea here is similar to line editor, but the

entire text is treated as a single stream of characters. Hence the

location for revision cannot be specified using line numbers.
Locations for revision are either specified by explicit positioning

or by using pattern context. eg. sed in Unix/Linux.

Line editors and stream editors are suitable for text-only

documents.

3. Screen Editors - These allow the document to be viewed and
operated upon as a two dimensional plane, of which a portion may

be displayed at a time. Any portion may be specified for display
and location for revision can be specified anywhere within the

displayed portion. eg. vi, emacs, etc.

4. Word Processors - Provides additional features to basic screen

editors. Usually support non-textual contents and choice of fonts,
style, etc.

5. Structure Editors - These are editors for specific types of

documents, so that the editor recognises the structure/syntax of the
document being prepared and helps in maintaining that

structure/syntax.

Debugger

Debugging means locating (and then removing) bugs, i.e., faults, in
programs. In the entire process of program development errors may

occur at various stages and efforts to detect and remove them may also

be made at various stages. However, the word debugging is usually in
context of errors that manifest while running the program during testing

or during actual use. The most common steps taken in debugging are to

examine the flow of control during execution of the program, examine
values of variables at different points in the program, examine the values

of parameters passed to functions and values returned by the functions,

examine the function call sequence, etc. In the absence of other
mechanisms, one usually inserts statements in the program at various

carefully chosen points, that prints values of significant variables or

parameters, or some message that indicates the flow of control (or
function call sequence). When such a modified version of the program is

run, the information output by the extra statements gives clue to the

errors.

Using print statements for debugging a program is often not adequate or

convenient. For example, the programmer may want to change the

values of certain variables (or parameters) after observing the execution
of the program till some point. For a large program it may be difficult to

go back to the source program, make the necessary changes (maybe

temporarily) and rerun the program. Again, if such printstatements are
placed inside loops, it will produce output everytime the loop is

executed though the programmer may be interested in only certain

iterations of the loop. To overcome several such drawbacks of

debugging by inserting extra statements in the program, there are a kind

of tool called debugger that helps in debugging programs by giving the
programmer some control over the execution of the program and some

means of examining and modifying different program variables during

runtime.

Device Drivers

Device drivers are software modules that can be plugged into an OS to

handle a particular device. Operating System takes help from device

drivers to handle all I/O devices. Device drivers encapsulate device-

dependent code and implement a standard interface in such a way that

code contains device-specific register reads/writes. Device driver, is

generally written by the device's manufacturer and delivered along with

the device on a CD-ROM.

A device driver performs the following jobs −

 To accept request from the device independent software above to

it.

 Interact with the device controller to take and give I/O and perform

required error handling

 Making sure that the request is executed successfully

How a device driver handles a request is as follows: Suppose a request

comes to read a block N. If the driver is idle at the time a request

arrives, it starts carrying out the request immediately. Otherwise, if the

driver is already busy with some other request, it places the new request

in the queue of pending requests.

Operating System

An operating system is a program that acts as an interface between the

user and the computer hardware and controls the execution of all kinds

of programs.

Following are some of important functions of an operating System.

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control over system performance

 Job accounting

 Error detecting aids

 Coordination between other software and users

SIC & SIC/XE Architecture, SIC & SIC/XE Architecture,

Addressing modes, SIC & SIC/XE Instruction set, Assembler

Directives and Programming.

http://solomon.ipv6.club.tw/Course/SP/sp1-1.pdf

Instruction Formats – SIC

 24 bit

 Load and Store Registers

– LDA, LDX, STA, STX, etc.

http://solomon.ipv6.club.tw/Course/SP/sp1-1.pdf

 Integer Arithmetic (all involve register A)

– Add, SUB, MUL, DIV
 Compare

– COMP – compares A with a word in memory

– Sets the CC in the SW
 Jump instructions

– JLT, JEQ, JGT – based on the CC as set by COMP

 Subroutine Linkage
– JSUB – jumps to subroutine, places return address in L

– RSUB – returns, using the address in L

Input/Output - SIC
 TD – test device is ready to send/receive data

– CC of < means device is ready

– CC of = means device is not ready
 RD – read data, when the device is ready

 WD – write data

 Transfers 1 byte at a time to or from the rightmost 8 bits of register
A.

 Each device has a unique 8-bit code as an operand.

Addressing Modes – SIC

 Direct x = 0 Target address = address
 Indexed x = 1 Target address + (X)

 (X) is the contents of register X

MODULE II

Assemblers

Basic Functions of Assembler. Assembler output format –

Header, Text and End Records- Assembler data structures, Two

pass assembler algorithm, Hand assembly of SIC/XE program,

Machine dependent assembler features.

Assemblers.pptx CH1H.ppt

