NPTEL web course on Complex Analysis

A. Swaminathan

I.I.T. Roorkee, India

and

V.K. Katiyar

I.I.T. Roorkee, India

Complex Analysis

Module: 4: Complex Integration
Lecture: 3: Cauchy Integral Formula

Complex Integration

Theorem on antiderivative

Theorem

Let f be continuous in D and has antiderivative F throughout D, i.e.

 $\frac{d}{dz}F = f$ in D. Then for any closed contour C in D

$$\int_C f(z)dz=0.$$

Theorem on antiderivative

Proof

From the previous result,

$$\int_{\mathcal{C}} f(z)dz = F(z_T) - F(z_I).$$

- Since C is closed, $z_T = z_I$.
- This means $\int_C f(z)dz = 0$.

Theorem on antiderivative

Proof

• From the previous result,

$$\int_{\mathcal{C}} f(z)dz = F(z_T) - F(z_I).$$

- Since *C* is closed, $z_T = z_I$.
- This means $\int_C f(z)dz = 0$.

Remark

This is alternative to Cauchy fundamental theorem.

Cauchy integral theorems

Equivalent statements

Theorem

Let f(z) be continuous in a domain D. Then the following are equivalent.

- (i) f has antiderivative.
- (ii) For every closed curve c, $\int_{C} f(z)dz = 0$.
- (iii) For two curves Γ_1 and Γ_2 , joining the points z_1 and z_2

$$\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$$

Proof

- (i) \Rightarrow (ii) is the previous result.
- For (ii) \Rightarrow (iii), let Γ_1 & Γ_2 be taken with positive orientation.
- Define $c = \Gamma_1 \cup \Gamma_2'$ where $\Gamma_2' = -\Gamma_2$.
- c is positive oriented.
- Hence by (ii) $\int_C f(z)dz = 0$.

Proof

• Thus $\int_C f(z)dz = 0$ implies

$$0 = \int_{\Gamma_1 \cup \Gamma_2'} f(z) dz$$
$$= \int_{\Gamma_1} f(z) dz + \int_{\Gamma_2'} f(z) dz$$
$$= \int_{\Gamma_1} f(z) dz - \int_{\Gamma_2} f(z) dz.$$

• Therefore $\int_{\Gamma_1} f(z) dz = \int_{\Gamma_2} f(z) dz$, which is (iii)

Proof

For (iii) \Rightarrow (i)

- Let (iii) be true.
- To prove that $\exists F$ such that F is analytic and $\frac{d}{dz}F = f$ for all z in D.
- Define $F(z) = \int_{z_0}^z f(s) ds$, for some fixed z_0 .
- Then F(z) is well defined.
- Now

$$F(z+\Delta z)=\int_{z_0}^{z+\Delta z}f(s)ds.$$

Proof

- Let $\Delta z = \int_{z}^{z+\Delta z} ds$,
- $\Longrightarrow f(z)\Delta z = \int_{z}^{z+\Delta z} f(z) ds$.
- This means,

$$F(z + \Delta z) - F(z) = \int_{z_0}^{z + \Delta z} f(s) ds - \int_{z}^{z + \Delta z} f(s) ds$$
$$= \int_{z}^{z + \Delta z} f(s) ds.$$

Proof

Hence,

$$\left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| = \frac{1}{|\Delta z|} |F(z + \Delta z) - F(z) - f(z)\Delta z|$$

$$= \frac{1}{|\Delta z|} \left| \int_{z}^{z + \Delta z} f(s) ds - \int_{z}^{z + \Delta z} f(z) ds \right|$$

$$= \frac{1}{|\Delta z|} \left| \int_{z}^{z + \Delta z} [f(s) - f(z)] ds \right|$$

$$\leq \frac{1}{|\Delta z|} \int_{z}^{z + \Delta z} |f(s) - f(z)| |ds|$$

Proof

- Since f is continuous, for given $\epsilon > 0, \exists \, \delta > 0$ such that $|f(s) f(z)| < \epsilon$ whenever $|s z| < \delta$.
- Hence, right hand side of the previous expression has $< \epsilon$.
- This means, for all s close to z, $\frac{d}{dz}F(z) \equiv f(z)$.
- Since this is true for all z, in that neighbourhood, F(z) is analytic at z.

Cauchy integral theorem

Example

To evaluate $\int_{\Gamma} \frac{dz}{z-z_0}$, where $\Gamma=\{z:|z-z_0|=r\}$ traverses twice. Here $z-z_0=re^{i\theta}$, $0\leq\theta\leq 4\pi:\theta=2\phi\Rightarrow 0\leq\phi\leq 2\pi, z-z_0=re^{i\theta}$

Hence

$$I=\int_0^{2\pi}rac{2ire^{ir2\phi}}{re^{i2\phi}}d\phi=4\pi i.$$

Complex integration

Cauchy Integral Formula

Theorem

Let f be analytic in a region R enclosed by a simple closed contour C. If $z_0 \in int C$, (interior of C), then for any $z \in D$

$$\int_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0).$$

Proof

$$\int_C \frac{dz}{z - z_0} = 2\pi i \Longrightarrow \int_C \frac{f(z_0)}{z - z_0} dz = 2\pi i f(z_0)$$

Consider

$$I = \frac{1}{2\pi i} \int_C \frac{f(z) - f(z_0)}{z - z_0} dz.$$

• Since f is analytic in D, for any z in the neighbourhood of z_0 , $|f(z)-f(z_0)|<\epsilon$ whenever z in a disk of radius ρ centered at z_0 .

Proof

Thus

$$|I| = \left| \frac{1}{2\pi i} \int_C \frac{f(z) - f(z_0)}{z - z_0} dz \right|$$

$$\leq \frac{1}{2\pi} \int_C \frac{|f(z) - f(z_0)|}{|z - z_0|} |dz|.$$

$$< \frac{\epsilon}{2\pi \rho} (2\pi \rho) = \epsilon.$$

• The result is true by replacing the disk $z:|z-z_0|<\rho$ by any contour c that lies entirely inside the disc (ρ,z_0) which is the region R.

Example

Question: Find
$$\int_{\Gamma} \frac{g(z)}{z(z-4)} dz$$
, where $\Gamma = \{z : |z| < 2\}$.

Answer.

- Let $f(z) = \frac{g(z)}{z}$. Then $f \not\in \mathcal{A}$ in |z| < 2.
- Hence Cauchy Integral Formula cannot be applied.
- Therefore, suppose that $f(z) = \frac{g(z)}{z-4}$.
- Then $f \in \mathcal{A}$ in |z| < 2
- Hence by Cauchy Integral Formula,

$$\int_{\Gamma} \frac{g(z)}{z(z-4)} dz = \int_{\Gamma} \frac{f(z)}{z-0} dz = 2\pi i f(0) = -\frac{\pi i}{2} g(0).$$

Consequence of Cauchy Integral formula

Poisson Integral formula

Theorem

Let $f \in A$ in $|z| < \rho$ and $z = re^{i\theta}$ in a domain D that contains $|z| < \rho$. Then

$$f(re^{i\theta}) = rac{1}{2\pi} \int_0^{2\pi} rac{(R^2 - r^2)f(Re^{i\phi})}{R^2 - 2\pi R\cos(heta - \phi) + r^2} \; d\phi,$$

where $0 < R < \rho$.

Further details regarding this result will be discussed in the last chapter.

