Home / Study Materials / KTU B.Tech S6 Lecture notes Design & Analysis 0f Algorithms

# KTU B.Tech S6 Lecture notes Design & Analysis 0f Algorithms

### KTU B.Tech S6 Lecture notes Design & Analysis 0f Algorithms

KTU B.Tech S6 Lecture notes – CS302 Design and Analysis of Algorithms

### MODULE II

• ##### Sets- Union and find operations on disjoint sets.

MODULE III

Graphs – DFS and BFS traversals, complexity, Spanning trees – Minimum Cost Spanning Trees, single source shortest path algorithms, Topological sorting, strongly connected components.Graphs – DFS and BFS traversals, complexity, Spanning trees – Minimum Cost Spanning Trees, single source shortest path algorithms, Topological sorting, strongly connected components.

MODULE IV

Divide and Conquer:The Control Abstraction, 2 way Merge sort, Strassen’s Matrix Multiplication, Analysis Dynamic Programming : The control Abstraction- The Optimality Principle- Optimal matrix multiplication, Bellman-Ford Algorithm.

Divide and Conquer:The Control Abstraction, 2 way Merge sort, Strassen’s Matrix Multiplication, Analysis Dynamic Programming : The control Abstraction- The Optimality Principle- Optimal matrix multiplication, Bellman-Ford Algorithm

MODULE V

Analysis, Comparison of Divide and Conquer and Dynamic Programming strategies
Greedy Strategy: – The Control Abstraction- the Fractional Knapsack Problem,
Minimal Cost Spanning Tree Computation- Prim’s Algorithm – Kruskal’s Algorithm.

Analysis, Comparison of Divide and Conquer and Dynamic Programming strategies
Greedy Strategy: – The Control Abstraction- the Fractional Knapsack Problem,
Minimal Cost Spanning Tree Computation- Prim’s Algorithm – Kruskal’s Algorithm.

MODULE VI

Back Tracking: -The Control Abstraction – The N Queen’s
Problem, 0/1 Knapsack Problem Branch and Bound:Travelling Salesman Problem. Introduction to Complexity Theory :-Tractable and Intractable Problems- The P and NP Classes- Polynomial Time Reductions – The NP- Hard and NP-Complete Classes

Back Tracking: -The Control Abstraction – The N Queen’s
Problem, 0/1 Knapsack Problem Branch and Bound:Travelling Salesman Problem. Introduction to Complexity Theory :-Tractable and Intractable Problems- The P and NP Classes- Polynomial Time Reductions – The NP- Hard and NP-Complete Classes

KTU B.Tech S6 Lecture notes Design and Analysis 0f Algorithms

x

## KTU B.Tech S6 Lecture Notes Heat and Mass Transfer

KTU B.Tech S6 Lecture Notes Heat and Mass Transfer   MODULE I ...

## KTU B.Tech S6 Lecture Notes  VLSI

KTU B.Tech S6 Lecture Notes  VLSI KTU B.Tech S6 Lecture Notes EC304 VLSI ...